Ruelle Perron Frobenius spectrum for Anosov maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruelle-perron-frobenius Spectrum for Anosov Maps

We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (In...

متن کامل

On Ruelle–Perron–Frobenius Operators. I. Ruelle Theorem

We study Ruelle–Perron–Frobenius operators for locally expanding and mixing dynamical systems on general compact metric spaces associated with potentials satisfying the Dini condition. In this paper, we give a proof of the Ruelle Theorem on Gibbs measures. It is the first part of our research on the subject. The rate of convergence of powers of the operator will be presented in a forthcoming pa...

متن کامل

Perron—frobenius Spectrum for Random Maps and Its Approximation

To study the convergence to equilibrium in random maps, we develop the spectral theory of the corresponding transfer (Perron— Frobenius) operators acting in a certain Banach space of generalized functions (distributions). The random maps under study in a sense fill the gap between expanding and hyperbolic systems, since among their (deterministic) components there are both expanding and contrac...

متن کامل

On Ruelle–Perron–Frobenius Operators. II. Convergence Speeds

We study Ruelle operators on expanding and mixing dynamical systems with potential function satisfying the Dini condition. We give an estimate for the convergence speed of the iterates of a Ruelle operator. Our proof avoids Markov partitions. This is the second part of our research on Ruelle operators.

متن کامل

Fredholm Determinants, Anosov Maps and Ruelle Resonances

I show that the dynamical determinant, associated to an Anosov diffeomorphism, is the Fredholm determinant of the corresponding RuellePerron-Frobenius transfer operator acting on appropriate Banach spaces. As a consequence it follows, for example, that the zeroes of the dynamical determinant describe the eigenvalues of the transfer operator and the Ruelle resonances and that, for C∞ Anosov diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2002

ISSN: 0951-7715

DOI: 10.1088/0951-7715/15/6/309